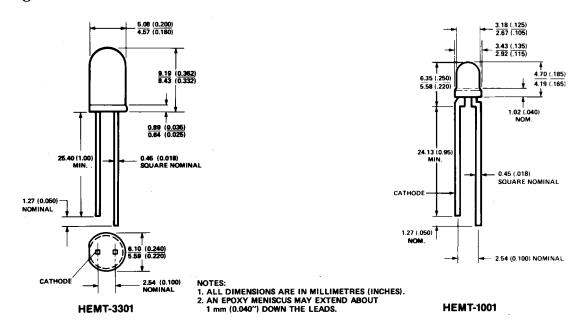


940 nm High Radiant Emitters

Technical Data

HEMT-3301 HEMT-1001

Features


- Nonsaturating, High Radiant Flux Output
- Efficient at Low Currents, Combined with High Current Capability
- Three Package Styles
- Operating Temperature Range -55°C to +100°C
- Medium-Wide Radiation Patterns
- Radiated Spectrum Matches Response of Silicon Photodetectors

Description

The HEMT-3301 and HEMT-1001 are infrared emitters, using a mesa structure GaAs on GaAs infrared diode, IRED, optimized for maximum quantum efficiency at a peak wavelength of 940 nm. The HEMT-3301 and HEMT-1001 emitters are untinted, undiffused plastic packages with medium-wide radiation patterns. These

medium-wide and wide radiation patterns eliminate the beam focusing problems that are encountered with emitters that have narrow radiation patterns. Applications include optical transducers, optical part counters, smoke detectors, covert identification, paper tape and card readers, and optical encoders.

Package Dimensions

Absolute Maximum Ratings at $T_{\!A}=25^{\circ}\!\mathrm{C}$

Power Dissipation	150 mW
DC Forward Current	
(Derate as specified in Figure 6)	
Peak Forward Current	1000 mA
(Time average current as determined from Fig	gure 7)
IRED Junction Temperature	110°C
Operating and Storage Temperature	55°C to +100°C
Lead Soldering Temperature	260°C for 5 seconds
(1.6 mm (0.063	in.) from emitter body)

Electrical/Optical Characteristics at $T_A = 25\,^{\circ}\!\mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Units	Test Conditions	Fig.
$I_{\rm e}$	Radiant Intensity						
	HEMT-3301	2.5	4.0		mW/sr	$I_F = 20 \text{ mA}$	4, 5
	HEMT-1001	1.0	2.0				
$\Delta I_e / \Delta T$	Temperature Coefficient		-0.58		%/°C	Measured at λ_{PEAK}	1
	for Radiant Intensity ^[1]						
Δλ/ΔΤ	Temperature Coefficient		0.3		nm/°C	Measured at λ_{PEAK}	1
	for Peak Wavelength ^[2]						
$\lambda_{ ext{PEAK}}$	Peak Wavelength		940		nm	Measured at λ_{PEAK}	1
$2\theta_{1/2}$	Half Intensity ^[3]						
	Total Angle						
	HEMT-3301		50		deg.	$I_F = 20 \text{ mA}$	8
	HEMT-1001		60				9
$t_{\rm r}$	Output Rise Time		1700		ns	$I_{PEAK} = 20 \text{ mA}$	
	(10% to 90%)						
$\mathrm{t_{f}}$	Output Fall Time		700		ns	$I_{PEAK} = 20 \text{ mA}$	
	(90% to 10%)						
С	Capacitance		30		pf	$V_{\rm F} = 0; f = 1 \text{ MHz}$	
$V_{ m R}$	Reverse Breakdown	5.0			V	$I_R = 10 \mu A$	
	Voltage					- ,	
V_{F}	Forward Voltage		1.30	1.50	V	$I_{\rm F} = 100 \text{mA}$	2
			1.15			$I_F = 20 \text{ mA}$	
$R\theta_{J ext{-PIN}}$	Thermal Resistance						
	НЕМТ-3301		260		°C/W	IRED Junction to	
	HEMT-1001		290			to Cathode Lead	

- 1. Radiant intensity at ambient temperature $I_e(T_A) = I_e(25\,^{\circ}\mathrm{C}) + (\Delta I_e/\Delta T) \, (T_A$ 25 $^{\circ}\mathrm{C})/100$.
- 2. Peak wavelength at ambient temperature: $\lambda_{PEAK}(T_A) = \lambda_{PEAK}(25^{\circ}C) + (\Delta\lambda/\Delta T) (T_A 25^{\circ}C)$. 3. $\theta_{1/2}$ is the off-axis angle from emitter centerline where the radiant intensity is half the on-axis value.
- 4. Approximate radiant flux output within a cone angle of 2θ : $\phi_e(2\theta) = [\phi_e(\theta)/I_e(0)] I_e(T_A)$; $\phi_e(\theta)/I_e(0)$ obtained from Figure 8 or 9.

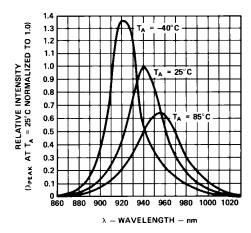


Figure 1. Radiated Spectrum.

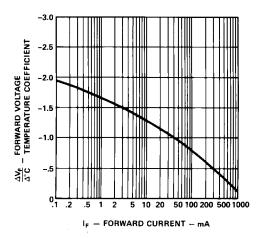


Figure 3. Forward Voltage Temperature Coefficient vs. Forward Current.

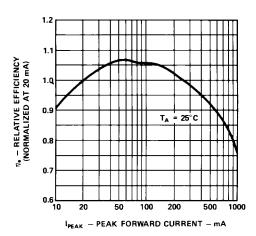


Figure 5. Relative Efficiency vs. Peak Forward Current.

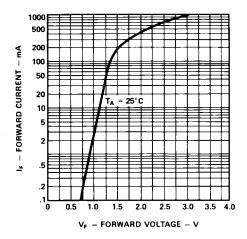


Figure 2. Forward Current vs. Forward Voltage.

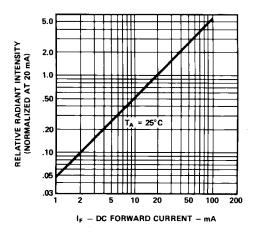


Figure 4. Relative Radiant Intensity vs. DC Forward Current.

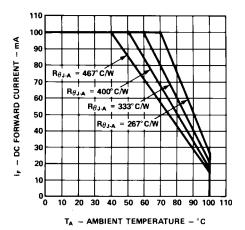


Figure 6. Maximum DC Forward Current vs. Ambient Temperature. Derating Based on $T_{\rm JMAX}=110\,^{\circ}\!\rm C.$

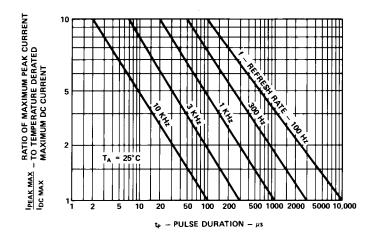


Figure 7. Maximum Tolerable Peak Current vs. Peak Duration ($I_{PEAK\;MAX}$ Determined from Temperature Derated $I_{DC\;MAX}$).

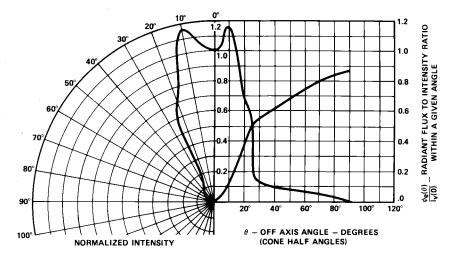


Figure 8. Far Field Radiation Pattern, HEMT-3301.

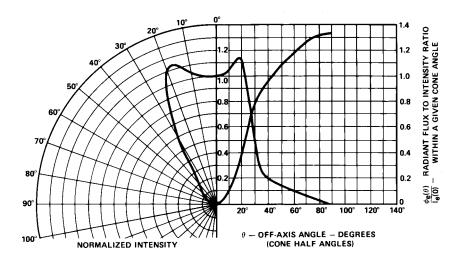


Figure 9. Far Field Radiation Pattern, HEMT-1001.

www.semiconductor.agilent.com

Data subject to change.
Copyright © 1999 Agilent Technologies, Inc.
Obsoletes 5954-8473E
5964-3813E (11/99)